Certificate Authentication

Spark for Developers Certificate for Krzysztof Zylak

Add to LinkedIn

Certificate ID: 
569415
Authentication Code: 
1b71d
Certified Person Name: 
Krzysztof Zylak
Trainer Name: 
Richard Naoufal
Duration Days: 
3
Duration Hours: 
21
Course Name: 
Spark for Developers
Course Date: 
4 December 2018 09:30 to 6 December 2018 16:30
Venue: 
Cambridge
Course Outline: 
  1. Scala primer
    • A quick introduction to Scala
    • Labs : Getting know Scala
  2. Spark Basics
    • Background and history
    • Spark and Hadoop
    • Spark concepts and architecture
    • Spark eco system (core, spark sql, mlib, streaming)
    • Labs : Installing and running Spark
  3. First Look at Spark
    • Running Spark in local mode
    • Spark web UI
    • Spark shell
    • Analyzing dataset – part 1
    • Inspecting RDDs
    • Labs: Spark shell exploration
  4. RDDs
    • RDDs concepts
    • Partitions
    • RDD Operations / transformations
    • RDD types
    • Key-Value pair RDDs
    • MapReduce on RDD
    • Caching and persistence
    • Labs : creating & inspecting RDDs;   Caching RDDs
  5. Spark API programming
    • Introduction to Spark API / RDD API
    • Submitting the first program to Spark
    • Debugging / logging
    • Configuration properties
    • Labs : Programming in Spark API, Submitting jobs
  6. Spark SQL
    • SQL support in Spark
    • Dataframes
    • Defining tables and importing datasets
    • Querying data frames using SQL
    • Storage formats : JSON / Parquet
    • Labs : Creating and querying data frames; evaluating data formats
  7. MLlib
    • MLlib intro
    • MLlib algorithms
    • Labs : Writing MLib applications
  8. GraphX
    • GraphX library overview
    • GraphX APIs
    • Labs : Processing graph data using Spark
  9. Spark Streaming
    • Streaming overview
    • Evaluating Streaming platforms
    • Streaming operations
    • Sliding window operations
    • Labs : Writing spark streaming applications
  10. Spark and Hadoop
    • Hadoop Intro (HDFS / YARN)
    • Hadoop + Spark architecture
    • Running Spark on Hadoop YARN
    • Processing HDFS files using Spark
  11. Spark Performance and Tuning
    • Broadcast variables
    • Accumulators
    • Memory management & caching
  12. Spark Operations
    • Deploying Spark in production
    • Sample deployment templates
    • Configurations
    • Monitoring
    • Troubleshooting